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Abstract

We study the effect ofU(3)-flavor breaking on high-density quark matter. We discuss, in
particular, a nonzero electron chemical potential and a finite strange-quark mass. We argue that
these perturbations trigger pion or kaon condensation. The critical chemical potential behaves as
pe ~ /mmsA/pg and the critical strange-quark massres~ m/3A%/3, wherem is the light-
quark massA is the gap, ang is the Fermi momentum. We note that parametrically, both the
critical ue andmg/(ZpF) are much smaller than the gap.2002 Elsevier Science B.V. All rights
reserved.

1. Introduction

The study of hadronic matter in the regime of high baryon density and small temperature
has revealed a rich and beautiful phase structure [1-3]. One phase which has attracted
particular interest is the color—flavor locked (CFL) phase of three-flavor quark matter
[4]. This phase is expected to be the true ground state of ordinary matter at very high
density [5—7]. State of the art calculations are not sufficiently accurate to predict the critical
density of the transition to CFL matter with any certainty. Current estimates typically
range ascrit ~ (3—6) oy, Wherep,, is the saturation density of nuclear matter. An exciting
prospect is the possibility to put experimental constraints on the critical density from
observations of neutron stars. Several proposals have been made for observables that are
characteristic of different superfluid quark phases, and attempts are being made in order to
include these phases in realistic neutron star structure calculations [8—10].

Initial work on the superfluid phases of QCD focused mostly on idealized worlds with
N; flavors of massless fermions and no external fields. But in order to understand the
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matter at the core of real neutron stars the effects of nonzero masses and finite chemical
potentials clearly have to be taken into account. The first study of the effects of a nonzero
strange-quark mass on CFL quark matter was carried out in [11,12]. The main observation
in this work was that a finite strange-quark mass shifts the Fermi momentum of the
strange quark with respect to the Fermi momentum of the light quarks. If the mismatch
between the Fermi momenta is bigger than the gap then pairing between strange and
nonstrange quarks is no longer possible. The transition from CFL matter to quark matter
with separate pairing among light and strange quarks (5C) is predicted to occur at

Mg~ \/pF—A. Alford et al. observed that in the vicinity of this phase transition we expect to
encounter inhomogeneous BCS phases [13] analogous to the Larkin—Ovchinnikov—Fulde—
Ferell (LOFF) phase in condensed matter physics [14-16]. In the LOFF phase Cooper
pairs have nonzero total momentum and, as a consequence, pairing is restricted to certain
regions of the Fermi surface.

In the present work we analyze CFL matter for strange-quark masses and chemical
potentials below the unlocking transition [17]. We will argue that in this regime CFL matter
responds to the external “stress” by forming a Bose condensate of kaons or pions [18]. This
effect can be understood as a chiral rotation of the CFL order parameter. Superfluid quark
matter composed of only two flavors is characterized by an order paragféter’ Cysd©)
which is a flavor singlet [19-21]. This order parameter is “rigid” and superfluidity has to be
destroyed in order to create a macroscopic occupation number of charged excitations [22].
CFL matter, on the other hand, is characterized by an order parameter which is a matrix in
color and flavor space [4]:

(gt ;Cal ;)= —(af ,Cab, ;) = b (6085 — 875%). 1)

wherei, j label flavor andz, b label color indices. We can introduce a chiral figldthat
characterizes the relative flavor orientation of the left- and right-handed condensates [23].
In the vacuumX' = 1, but under the influence of a perturbatidnrmay rotate. Becaus®

has the quantum numbers of pseudoscalar Goldstone bosons, such a rotation corresponds
to a macroscopic occupation number of Goldstone bosons.

There is an even simpler way to explain the phenomenon of kaon condensation in
superfluid quark matter, see Fig. 1. Here we concentrate on the effect of a nonzero strange-
guark mass. A nonzero quark-mass shifts the energy of strange quarks in the vicinity of
the Fermi surface by m2/(2pg). In normal quark matter this leads to the decays
U+ e + ve (or s— u+d—+ ). This decay will reduce the number of strange quarks and
build up a Fermi sea of electrons until the electron chemical potential reachg(4p).

In superfluid quark matter the system can also gain enm@ﬁp,:) by introducing an

extra up-quark and a strange hole. This process appears to require the breaking of a pair
and therefore involve an energy cost which is of the order of thegafhis is not correct,
however. An up-, down-particle/strange-hole pair has the quantum numbers of a kaon. This
means that the energy cost is nbtbutm, < A. The CFL vacuum can decay intotkor

KO collective modes via processes like-0 (d9)(du) 4+ e~ + 7 or 0— (T3 (du).

This paper is organized as follows. In Section 2 we present general arguments for
the existence of kaon and pion condensates in high-density matter with broken flavor
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Fig. 1. Schematic picture of weak decays in normal (a) and superfluid (b) quark matter with
three quark flavors. We assume that initially the density of all quark flavors is the same, so that
N T m§/<2pF). Solid and open circles show particles (p) and holes (h). In (a), a strange
particle decays into an up-quark, an electron and a neutrino, leaving behind a strange hole. In the
left panel of (b), a strange particle decays into an up-quark, a down-particle—hole pair, an electron
and a neutrino. The remaining (pp)(hh) configuration has the quantum numberstofia ke right

panel a/ve show the decay of a strange quark into a (pp)(hh) configuration with the quantum numbers
of a K.

symmetry. In Section 3 we strengthen these arguments by performing an explicit matching
calculation. In Section 4 we provide a different perspective on our results by using linear
response theory.

2. Three-flavor quark matter at ms# 0and pe #0

In order to study QCD at high baryon density it is convenient to use an effective descrip-
tion that focuses on excitations close to the Fermi surface. Two effective descriptions of
this type are available. The first effective theory is valid for excitation energies below the
Fermi momentunpg, while the second one applies to excitation energies below the\gap
The coefficients that appear in these effective theories can be worked out using matching
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arguments. In the first stage we match the microscopic theory, QCD at finite baryon den-
sity, to an effective theory beloy. In the second step, we match this effective description
to an effective theory involving Goldstone modes.

The QCD Lagrangian in the presence of a chemical potential is given by

L=Y(P+ 1yo— neQyo)¥ — VL Myr — YrM Y1 — 5G4, G4, )

whereM is a complex quark-mass matrix which transformaas> LM RT under chiral
transformationsL, R) € SU(3)L x )R, Q is the quark-charge matriy, is the baryon
chemical potential angle is (minus) the chemical potential for electric charge. As usual,
we treatM as a (spurion) field in order to determine the structure of mass terms in the
effective chiral theory. Once this has been achieved, we set the mass matrix to its physical
valueM = diag(my, mq, ms).

The quark field/ can be decomposed #s= v + ¢ wherey. = %(11& -p)Y¥r. The

¥4+ component of the field describes quasiparticle excitations in the vicinity of the Fermi
surface. Integrating out thg_ field we get [24—26]:

dp, d3p

= ﬁm{%&_(l)o —€p—v-A)YLy

A .
- E(lﬁfﬂrcwﬂwaﬂ% — 84j85i) + h.c.)

4y (— 0- MMT)w
L+ He 2p|: L+

A i bt t ot
+ o YL O (M My, — M My,

8pE
+(R—>L,M—>MT,Q—>QT)+-~-}, 3)

wheree, = [p| — 1, v, = (1,9) with ¥ = p/p, A is a parameter that controls mass
corrections to the gap andj, ... anda, b, ... denote flavor and color indices. In order

to perform perturbative calculations in the superconducting phase we have added a tree-
level gap termy. RC Ay r in the free part of the Lagrangian and subtracted it from
the interacting part (not explicitly shown). The magnitudesoftan be determined self
consistently order by order in perturbation theory. In the normal phase, dathd A

vanish. In this case, only the first mass term in (3) contributes.

We observe that at Q/ pg), flavor symmetry breaking due to a chemical potential for
charge is indistinguishable from symmetry breaking due the quark-mass matrix. Indeed, up
to terms suppressed by additional powerésf p.), (p/ pg) or (m/ pg) the Lagrangian (3)
is invariant under the time-dependent flavor symmetry (from now on we drop the subscript
)

YL — Ly,
YrR— R(OYR,

Mmt MM _ +
<—,U~eQ - ) — L(t)<—,U~eQ - )L (t) +1L(t)dpL" (1),
2pe 2pg
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whereL(¢) andR(z) are left- and right-handed time-dependent flavor transformations.

For excitation energies below the gap we can use an effective theory that includes
only the pseudo-Goldstone bosons [23,26—-28]. The scale of the momentum and energy
expansion in this theory is set by the gapTaking into account the symmetries discussed
above we see that a generic term in the effective Lagrangian has the form

do—ineQ —iMMT/2p)\" [ 8\ (MM \" q
£~f3[A2< o —ineQ /( pF)) (_) ( ! ) (ueQ> . 5)
A A DE PE
This equation implies that th&¥th-order term in the effective Lagrangian is given by the
most generaBU(3)L x SU(3)Rr invariant term constructed from the chiral field and
containingn covariant time derivativesy spatial derivativesp powers of M2, andg
powers ofueQ such thatv =n 4+ m + p 4+ g. We note that mass terms are suppressed by
eitherM?/p2 or MM /(pgA). Terms of the formW?/pZ contain the quark-mass matrix
in the flavor antisymmetric combination shown in the gap term in Eq. (3).
The leading terms of the effective Lagrangian take the form

+

)RT(z) +iR()dR @), (4)

2
Leit = % Tr[VoZ Vo —v29; 29, 2] + 24[detM) Tr(M ™1 2) + h.c]
T (6)

( MMT) . ( t MTM>

doX +1 neQ + 2 —1X\ pneQ + . (7)

2pg 2pe

Here X = expin?A%/ f) is the flavor-octet chiral field and th8J(3)a generators are
normalized as Tn“r’] = 25%*. We have not displayed the flavor-singlet part of the
effective Lagrangian. The firstterm in Eq. (6) is invariant under the approximate symmetry
(4) because of the presence of the covariant time derivative. The second term is not
invariant under (4), butt ~ f2A2/p2 is suppressed by/bZ, in accordance with Eq. (5).

The M? term is not the most general term consistent with the symmetries. The structure
of this term determined by the fact that it has to contain the quark-mass matrix in a flavor
antisymmetric combination. @/2) terms that are symmetric in flavor do not vanish, but
they are strongly suppressed. We provide an estimate of these terms in Appendix A.

Despite the similarity between the effective theory for the Goldstone modes in the CFL
phase and chiral perturbation theory in vacuum, there are important differences in the
power counting. As usual, the contribution of loops is suppressed by powergfaf
However, in the CFL phasé;: ~ p > A which means that the suppression of loops with
respect to tree level terms is much more pronounced than it is in the vacuum.

More differences appear in the expansion First of all, because of an approximate
axial Z, symmetry in the CFL phase there are no odd powend iin addition to that, the
(MMTY(MTM) terms can become comparable to #é terms without breaking the chiral
expansion. Indeed, as we shall argue below, this is likely to be the case for realistic values of
mg and p. There are two reasons why the M1 (MTM) term can become comparable
to the M2 term. First, the term proportional to¥ M )(MTM) gives a contribution to

VoX
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meson masses which is of the oni}e?r/pF while theM? term contributes at ordetA/pg.
These contributions are comparableif- A, which is inside the regime of validity of the
effective theorym < \/A—p,:. Second, in the realistic case whetie > myg, my, the term
quadratic inM is proportional to at least one light-quark mass, while the term quartic in
M contains terms proportional mg‘.

Using (6) we can easily compute the masses of the Goldstone bosons in the CFL phase.
At large density, Lorentz invariance is broken and we identify the mass with the energy of
a p = 0 mode. Fone = 0 the masses of the flavor nonsinglet states are given by

mg—ma 4A 12

Myt = :FT + F(mu + md)ms )
F s

mg—ma 4A 1/2

mg, = :FTPF + 72 —zmdmuy+ms)|
7T

Ll R (8)
Myogo =+ 2PF fﬂmu mg—+ ms .

The splitting between particles and antiparticles can be understood by observing that the
crossed terms in the kinetic term of Eq. (3) act as an effective chemical potential for
strangeness/isospin evengit = 0. We observe that the pion masses are not strongly
affected but the mass of thetkand K is substantially lowered while the Kand K°
are pushed up. As a result the'kand K2 meson become masslessiif, ~ m1/3A2/3
For larger values ofns the kaon modes are unstable, signaling the formatlon of a kaon
condensate.

Once kaon condensation occurs the ground state is reorganized. For simplicity, we
consider the case of exact isospin symmeigy= mq = m. The most general ansatz for
a kaon condensed ground state is given by

X = exp(ioe[ co61) 24 + SiN(1) COLB2) A5 + SIN(B1) SIN(B2) COLP) A6

+ sin(61) sin(62) sin(¢)A7]). 9)
With this ansatz the vacuum energy is given by
2 2\2
V() =~ f;i(} (u> sin(@)? + (m%)?(cos(a) — 1)), (10)
2 2pe

where (m2)? = (4A/f2)my,a(muy,d + ms) is the QM?) kaon mass in the limit of exact
isospin symmetry. Minimizing the vacuum energy we obtaia O if mg/(zpF) < mﬁ and
cosa) = (m@)?/us with peft = m2/(2pg) if perr > mY. We observe that the vacuum
energy is independent 61, 62, ¢ even ifa £ 0. This implies that the effective potential in
the kaon condensed phase has three flat directions. The hypercharge density is given by

_ 2 mﬁ
ny = fper( 1— —5 ). (11)
Heff

whereueff = mg/(zpF). This result is typical of a weakly coupled Bose gas [29-31]. We
also note that within the range of validity of the effective thepry < A, the hypercharge
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density satisfies, < Ap,%/(Zn). The upper bound on the hypercharge density in the
condensate is equal to the particle density contained within a strip of widanound
the Fermi surface.

The symmetry breaking pattern®J(2); x U(1)y — U (1) wherel is isospin andV’
is hypercharge. It is amusing to note that this is the symmetry-breaking pattern of the
standard model. Kaon condensation is analogous to electroweak symmetry breaking with
a composite Higgs field [32,33]. We can discuss kaon condensation in terms of an effective
field theory which only involves a complex kaon doubfet= (K*, K©)

L =[@0+inen®][@0—inen®] — (m2)*(dd) — n(@T®)”. (12)
If peff > m& the kaon field acquires a nonzero vacuum expectation vdijie- (0, v) and
theSU(2) x U (1) symmetry is broken t&/ (1). From (12) we get = (124 — (mR)?)/(21).
We can fixa by comparing the amplitude of the kaon field to the result obtained from the
chiral theory. We find. = (m%)?/(2£32).
In weak coupling the coefficients of the effective Lagrangian can be computed and more

guantitative statements about the onset of kaon condensation can be made. The gap is given
by [6,34-37]

3r2
A= 51%42—1/3(2/3)—5/2%—5exp(—). (13)
V2g

The pion-decay constant, has been computed to leading ordersin[27] (a factor 2
discrepancy in the literature will be resolved in Section 3):

» 21-8log2 u?
fa="1g 22
There is also disagreement about the value of the condt§26—28,38,39]. The results
given in [26,27] are respectively

(14)

AA 342
A=—lo A), A=—. 15
2.2100(1/4) o (15)

Using the first of these two results, & Kondensate forms if
144 _
3

—_ AAlo A). 16
mg > (21—8logz>m“ g(u/A) (16)

In Fig. 2 we show the dependence of the kaon massgior p. = 500 MeV and withA
and f,; calculated to leading order in perturbation theory. We observe thattheéomes
massless foms >~ 60 MeV. There is obviously some uncertainty associated with the use
of first-order perturbation theory. An estimate of this uncertainty is provided by the scale
dependence of the result. We have calculatgdwith g evaluated at the scalé = p.
Varying A betweenp./2 and 2. gives critical strange-quark masses between 39 and
67 MeV.

If charge neutrality is enforced, we have to add the contribution of electrons to
the thermodynamic potentia®? (X, j1e) = 268(Z, ite) — ua/(127?). The ground state
is determined by minimizings2 with respect to X subject to the condition that
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Fig. 2. Masses of K and KO, KO excitations in the color—flavor locked phase. We show the excitation
energies as a function efs for p = 500 MeV. The gapd = 67 MeV and the pion-decay constant

fr =104 MeV were determined to leading order in perturbation theory. The solid and dashed curve
show the masses of th& T, KO) and (K™, KO) states. The dotted curve shows the kaon masses
calculated from the leading-order&q) term. The short dashed curve shows the pion masses.

32/(dpe) = 0. In the isospin symmetric limit these conditions are satisfied by plre K
condensation withe as determined above and &) = sin(62) = 1. This conclusion
remains valid in the caseq > my because the light-quark mass difference also disfavors
K* condensation compared td Kondensation.

The effect of a small electron chemical potential can also be read off from Eq. (6).
A positive electron chemical potential lowers the energy of negatively charged Goldstone
modes and increases the energy of positively charged modes:

E+ =tpue+my=, Ex, = tpe+mg,. )

A meson condensate will form when: equals the mass of the lightest negatively charged
state. Let us again consider the limit of exact isospin symmeify- mg = m. The mass

of the K™ ism,_ = (Zﬂ/fn)Jm—nis + m§/(2p,:) and the mass of the™ is m, - =
ﬁ(zﬂ/fn)m. For very smalins, the lightest negatively charged patrticle is the,K

but for m2/(2pg) > (V2 — 1)(2V/A/ f=)/mms the lightest negative state is the . For
negative electron chemical potentials, & Kondensate is always favored. We should note
that the masses of charged Goldstone bosons are modified by electromagnetic effects. The
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electromagnetic self-energy in the CFL phase was estimatedmi,pev aemA? [40,41].
At sufficiently large baryon density this effect will dominate over th@/3) contribution
to the Goldstone boson masses.

3. Matching calculation for the O(M*) terms

In the weak coupling regime the coefficients appearing in the Lagrangian (6) can be
computed by matching to perturbative QCD. In this section we will perform the matching
calculation for theM* terms in Eq. (6). Our goal is two-fold: to strengthen and illustrate
the symmetry arguments presented in the previous section and to clarify the calculations
of fr in the literature!

We begin by calculating the one-loop polarization functions for the zeroth component
of left-handed flavor currentg , right-handed flavor currentg and (transposed) color
currents;jJ . In the limitw = 0, k — 0, we find

1 1
3 0 -3
M ©@=—-| 0 3 —3|[m3, (18)
1 1 4
2 2

where the indiced, B correspond td@ , jr, jCT) and we have introduced the quantity

21-8log2) [ pu*
18 2n2 )’

which is, up to a factog?, the Debye mass [27,42]. The LL and RR components of (18)
receive contributions both from diagrams with normal propagators and from diagrams with
anomalous propagators, see Fig. 3. The LC and RC components only receive contributions
from diagrams with anomalous propagators [41]. The overall coefficient is nevertheless
exactly the same. The CC entry is twice bigger than the LL and RR entries because it
receives contributions from both left- and right-handed fermions.

The matrix (18) is not diagonal, so there is mixing between gluons and left- or right-
handed flavor currents. Also, there is no mixing between left- and right-handed flavor
currents, contrary to what we would expect for a system with broken chiral symmetry.
These defects can be cured by resumming bubble chains with intermediate gluons. In
practice we only have to compute the two-loop contribution because higher-order diagrams
simply correspond to replacing the free gluon propagatdnd — k2) with the dressed
propagator 1(w? — k? — g?m3). The two-loop contributions to the polarization function
are superficially suppressed by a facgdr but in the limitw, k — 0 the factorg? in the
numerator is canceled by the screening nﬁm% in the denominator.

Summing all bubble chains, we get

md = (19)

1 _1 9
4 4

mgo=—1-3 1 o|md. (20)
0 0 1

1 we thank D. Kaplan for suggesting this calculation to us.
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a)

+ L L
b)
L R
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L C
+ L c
+ L C

Fig. 3. Diagrams contributing to the two-point functions of two L currents (a), one L and one
R current (b), and one L and one color current (c). The squares denote the anomalous fermion
self-energy, while the triangle denotes a resummed gluon propagator.
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We observe that flavor and color currents are decoupled and that the mixing matrix between
left- and right-handed current has the form expected for a system with broken chiral
symmetry. To leading order ig?, there are no additional contributions to the polarization
function in the soft limit. We can now match the result (20) against the low-energy theory:

2
L= ff Tr(VozVoxT), (21)

where the covariant derivativég X = 9o X + iW_ X — i ¥ Wr determines the coupling to
left- and right-handed gauge fieltl§ r. Matching the gauge-field mass terms against (20)
gives 2 = m3, which is the result of Son and Stephanov [27,43,44].

This result can also be obtained in a different way. Since the gluon field acquires a large
mass of ordegu > A, it does not appear in the low-energy effective theory and we should
be able to integrate it out [23]. The matrix in (18) has eigenvalues—1/2, —3/2,0
and eigenvector€l, —1)/v/2, (1,1, —2)/+/6 and(1, 1, 1)/+/3. The vanishing eigenvalue
corresponds to the generators of the unbro&eii3).r+c. The one-loop polarization
function can be matched against the following mass term for the gauge fields:

2
£==P[3WL — W2+ 3(Wi + Wr—24)°]. 22)

The gauge-field mass term still has the structig@?/2)(WZ + W2 + mixing) apparent
in (18). Integrating out the gluon fieldo eliminates the second term in (22) and we are
left with
m2D 1
42
which has the structure expected from the low-energy effective theory (21). Matching (23)
against (21) gives2 = m% as before. The important point is that in both approaches,
summing bubble chains or integrating out the gluon field at tree level, the mixing between
flavor and color currents cuts down the coefficient of the quadratic téffnand W3 by a
factor of 2 and introduces mixing between left- and right-handed currents.

We are now in a position to perform the matching calculation fottfeterm in Eq. (6).
In Appendix B we present an alternative argument based on integrating out the gauge field.
We are concerned with a possible mass term of the form

L= (WL — WR)?, (23)

r2
L= _f? (MM — =M™M)(MTMET - ZTMmT)]
r2
- _f? T[(MMTsM™MET — MM TMMT)]. (24)

We will determine f by computing the shift in the ground-state energy proportional to
TriMMTMTM] and TE(M MT)?] in both QCD and in the effective theory. In the effective
theory the shift is given by
F2
AE = f? Tr[(MmY)(MTM) — (MMT)?). (25)
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a)

M M
M M*
b)
M+ M M+ M+
+
M M+ M M
" "
.
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Fig. 4. (a) shows the diagram in the microscopic theory which is matched agaiMW@MTME
term in the chiral theory. (b) shows the diagrams which are matched agairtjﬂfilmé)2 term.

We note that the two terms in Eq. (24) can be distinguished even in the phaskby the

the relative position o and M T, We also note that other @7%) terms allowed by the

symmetries of QCD give structures that are different from the ones that appear in Eq. (25).
In the microscopic theory, the shift in the vacuum energy proportionaltd ¥ M T M)

and T (M M1)2] comes from the graphs in Fig. 4, (a) and (b). TheMM TMTM] term is

given by

1 m s/ m2
AE = L) T MM ~—~<—D>Tr MTMP
(2PF)2(2> [ ] mf \ 2 [ ]
_ "5 1 T{(MM1)(MTM)] (26)
2 (2pr)? ’
and the THM M1)2] term is
mg 1 2
E=--2 Tr[(MMmT)7]. 27
2 (2PF)2 [( )] ( )
Matching these results against Eq. (25), we conclude that
2
r2 fr[
_ , 28
/ (2pF)? (8)

which is the result we derived in Section 2 from making the time derivative covariant with
respect to time-dependent flavor transformations.
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4. Linear response

In this section we offer a different perspective on the results discussed in the previous
sections by using linear response theory. We shall also provide a more microscopic
explanation of why the two- and three-flavor cases behave so differently. In the three-
flavor case the system responds to a nonzero electron chemical potential by forming a
condensate of collective excitations. In the two-flavor case, on the other hand, the response
is carried only by the ungapped fermions. From an effective-field theory point of view this
is simply due to the fact that three-flavor CFL quark matter has broken chiral symmetry and
the low-energy effective description contains charged collective modes whereas the two-
flavor theory has unbroken chiral symmetry and the low-energy theory contains ungapped
fermions and neutral modes.

In order to set the stage for the discussion of superfluid quark matter we briefly review
the response of ordinary quark matter. The grand canonical potential of noninteracting
guarks at zero temperature is given by

Nc 5 3 wr+ky
=) O G T RS T G | R
f

with k; = //@ — m? is the Fermi momentum and apd; the chemical potential for the
quark flavorf = u, d, s. The quark density is given by
. 052 _ ch?c
nr= s 3m2’

It is convenient to decompose the chemical potential into baryon charge, isospin, and
hypercharge components:

(30)

1 1 1

1 1
Ku =l ~+ Sy + =My, Kd == S+ =My, Hs= [t — —=[by-
’ 27T 2y3 27 T 2y3 ° V3

We also note that, = Jﬁ,uY = —pue acts like a chemical potential for electric charge. We
can now study the response of the system to an external chemical potential or a change
in the quark masses. We begin with the flavor symmetric eagse- mq = ms = 0. The
isospin and hypercharge susceptibilities are
an, 3202 any 3202 w?

AT A A T A c<2ﬂ2)'
This result has a very simple interpretation. The change in the isospin or hypercharge
density as a function of the corresponding chemical potential is simply given by the
density of states on the Fermi surface. The susceptibility (31) can also be calculated in
a different way, using the fact that is the flavored vector current correlation function at
zero momentum. We have

xi=—T(0=0.F—0)=— [ d(;fw30) (32)

(31)

with ji(x) = V()Y %w. The correlation function (32) has a vacuum piece and a density-
dependent piece. The density-dependent piece is dominated by the contribution of particles
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and holes in the vicinity of the Fermi surface. We can calculate this contribution using the
effective theory proposed in [24,25]. We get

. d*p 1
x = lim NC/ 7
,k—0 (2m)* (pg — €p)(pg + @ — €pti)
d®p on u?
= N, — =N¢| =— 33
¢J] @n)39e c<2712>’ (33)

wheree, = E, — u, E, =/ p?>+m?, andn(e) is the density of states. This result
obviously agrees with Eq. (31).

From the grand canonical potential (29) we can also determine the response of the
system to nonzero quark masses. The derivative of the hypercharge density with respect
to the strange-quark mass is given by

Ne [ u?
m2=0 N 73 (%> . (34)

This result expresses the simple fact that the number of strange quarks is depleted
compared to the number of nonstrange quarks as the mass of the strange quark is increased.
Again, we can compute this susceptibility using diagrammatic techniques. Computing a
one-loop graph with one insertion pf, and one insertion 0fi2/(2u) we reproduce (34).

When we study real physical systems, we are interested in the response of the system
subject to the constraint that certain quantities are exactly conserved. In the case of neutron
stars, for example, we are interested in the composition of quark matter subject to the
condition that the baryon density is fixed and the net density of electric charge is zero. For
this purpose we consider the thermodynamic potential as a function of the quark density
pq = 3pg, the up- and down-quark fractions= py/pq andy = pd/pq, and the electron
chemical potentiale:

any 3202

=—U—F
am3 m2=0 Omgdpuy

o(pg, X, y, he) = F(pq, x,y) — neQ

3?3 43
= qu/ (x4 y¥ 34 1 —x — y)¥3
_ -2/3
47 4/3,0q / mg(l—x _y)2/3}
1 1
+ HepPq (x - §) - @ué. (35)

We have neglected higher-order terms in the strange-quark mass as well as the mass of
the electron. In order to determine the ground state we have to make (35) stationary with
respect tax, y, we. Minimization with respect toc and y enforcesg equilibrium, while
minimization with respect ta.e ensures charge neutrality. We find

2
m
e —, (36)

4pe

which shows that there is a small nonzergand a corresponding suppression of strange
quarks with respect to light quarks even at high density.



816 PF Bedague, T. Schafer / Nuclear Physics A 697 (2002) 802822

We would now like to study how these results are modified in superfluid phases of
QCD. We begin with a simple toy model introduced by Rajagopal and Wilczeck [17].
The model contains two quark flavors, up and down, that pair in a spin-singlet state which
is antisymmetric in both color and flavor. The pair condensate is described by the order
parametefe®®u?Cysd®). Here,a, b are color indices that only take on the values 1 and 2.
One may think of this toy model a&; = 2 QCD where the contribution of the third,
unpaired, quark color is ignored. Alternatively, we may think of this theoryas= 2
QCD.

We can calculate the response in the superfluid in the same way we did in the normal
phase, using the relation between the quark-number susceptibilities and the 00-component
of the polarization function. In the superfluid phase, there are two contributions coming
from the normal and anomalous components of the quark propagator. For the quark number
susceptibility we get

XB = —Hoo(a):O,I;—> 0)

_an, [P s 42 37)
) @R (2 — 2 A2)2 2_.2_ 22|
(Po_ep_ ) (pO_Ep_ )

where the first term is the contribution from the normal quark propagator and the second
term is the anomalous contribution. The two contributions are exactly equal and sum up to

ol () (£)]-we(£),

which is equal to the result in the normal phase. We should note that the first term alone
only contributes half the susceptibility in the normal phase, even though the susceptibility
is independent of the gap and the naie— 0 limit of the first graph would seem to
correspond to the susceptibility in the normal phase. This is due to the fact thatth@

and A — 0 limits do not commute. This phenomenon is well-known from calculations of
the screening mass in other many body systems [45].

The calculation of the isospin susceptibility proceeds along exactly the same lines,
only the isospin factors of the two diagrams are different. The isospin factor of the
normal contribution is frrat3] =2, while the isospin factor of the second term is
trlratetate] = —2. The two contributions cancel exactly and the isospin susceptibility is
zero. This results has a simple physical interpretation. The superfluid order parameter in
Ni = Nc = 2 QCD is a flavor singlet and the only broken symmetry istiti¢) of baryon
number. As a result, there is only one massless staté] theGoldstone boson. This state
couples to the baryon density and leads to a nonzero baryon-number susceptibility but it
does not couple to isospin. All states that carry isospin have energies of the order of the
gap, sox, remains zero as long ag < A.

We can also see how the calculation of the isospin susceptibility differs in the case of
CFL quark matter. Because of the symmetries of the CFL phase, there are two types of
quasiparticles, aBU (3) octet with gapAg = A and anSU(3) singlet with gapA; = 2A.

Up to degeneracy factors, the two types of quasiparticles contribute equally to the quark-
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number susceptibility. We fingg = 18u2/(272), which is equal to the result in the normal
phase. The calculation of the isospin susceptibility is more complicated. We get

o2 [ S )7 Pote
! (2m)* | 6 (p§ — €2 — A9) (g — 2 — 43)
} pS—i—e;‘;
3(p§—e2—A3) (g — €2 — 43)
1 A2
3(pg— €2 — A5) (g — €2 — 43)

=

AgAi }
3 (pg— e} — 29 (P — €5 — 44
The first term comes from particle—hole diagrams with two octet quasiparticles while the
second term comes from diagrams with one octet and one singlet quasiparticle. There is
no coupling of an octet field to two singlet particles. The third and fourth term are the
corresponding contributions from particle—particle and hole—hole pairs. The four integrals
in (39) give

_27+1 1 4log2 | [ u?\ 21-8log2) [ u?
N =N6"3 3 9 472) " 18 272

2
~ 0.86(“—>, (40)

(39)

22

which should be compared jg = 312/(27%) in the normal phase. We observe that there is

a partial cancellation between the normal and anomalous contributions. However, because
of the more complicated flavor structure this cancellation is not exact. The isospin density
induced by an isospin chemical potential is reduced by a faet85 compared to the
normal phase, but it does not vanish. In linear response theory we expand around the
point u, = my = mg = ms = 0. In the real world the quark masses are nonzero and there

is a critical isospin chemical potenti,’adfrit # 0 below which the isospin susceptibility
vanishes. In order to see a threshold behavige,inve have to resum mass corrections.
This is most efficiently accomplished using the effective chiral description developed in
Section 2, see Eq. (10).

5. Summary

We have studied the response of three-flavor quark matter to a nonzero electron
chemical potential and a nonzero strange-quark mass. We have focused on the regime
e, m§/(2pF) < A in which the perturbation does not destroy color—flavor locking. We
have identified a new scajee, mé/(ZpF) ~ J/mu.dms(A/pg) which corresponds to the
onset of pion or kaon condensation [46-51]. This scale is parametrically much smaller
than the gap. If CFL quark matter exists in the core of a neutron star, it is likely t&be K
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condensed. Both with or without a kaon condensate, there are no electrons present [17].
If CFL quark matter is in contact with a hadronic phase that supports a large electron
chemical potential the surface layer is likely to be Kr 7~ condensed [52].

These results are based on an analysis of how to incorpp@amdmg/(ZpF) in the
chiral effective theory. Both terms enter as constant flavor gauge fields, with coefficients
completely determined by,.. The contribution of then2/(2pg) term to the Goldstone
boson masses is of higher order in the quark masses as compared to the leading-order
J/mms(A/pp) term. It can nevertheless become dominant because thg @rm is
suppressed by powers Qfm/ms and (A/pg). As a consequence, the(®?) term can
cancel the @n) term without leading to a breakdown of the low-energy expansion.
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Appendix A. Masstermsinduced by the color-symmetric diquark condensate

The Q(M?) mass term in (6) gives anomalously small Goldstone-boson masses of the
ordermgg ~ /mms(A/ pg). We already noted that mass terms not suppresseéd pyr)
cannot appear at ((Mz). For strange mesons, the(ﬂz) mass term also contains an
additional suppression factqym/ms. Here,m is the mass of the light quarks ame
is the strange-quark mass. The fact that all Goldstone-boson masses are proportional to the
light-quark mass is related to the fact that the CFL order parameter is totally antisymmetric
in flavor. This flavor structure also leads to an accidental symmetry of the effective theory
at O(M?). If ms= 0 butm = 0, we find an octet of exact Goldstone bosons, even though
the unbroken flavor symmetry is on8J(2).

There are mass terms at@?) that are consistent with the symmetries of the CFL phase
that will remove the accidental symmetry and give contributions to the kaon mass that are
proportional toms(A/pg). These terms are induced by the color—flavor symmetric gap
parameter

AY = As(878h + 8967). (A1)

The symmetric gap is consistent with the symmetries of the CFL phase but disfavored
by the interaction. In particular, one-gluon exchange is repulsive in the color-symmetric
quark—quark channel. In perturbative QCD, a small symmetric gap is generated by mixing
with the primary gap parameter. We find [6]
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2log(2
AsziwAA’ (A.Z)
T 36
whereAp is the color—flavor antisymmetric gap parameter.
We can calculate the contribution dfs to the Goldstone masses using the methods of

Beane et al. [26]. Including the effects of bathy and As, we find

L=— AAAZA |og<ﬂ> (TrMZ) TI(M E) — TM EM %) + h.c.)
47 p[:
_ A;TAZS m(%) (MM ) Tr (M 2) + Tr(MEM X) +h.c.). (A.3)
F

Here, A s are the flavor-antisymmetric and -symmetric “anti-gaps”. For the purpose of
estimating the relative size of the two mass terms, we shall assumahat- Aa s. We
can now calculate the correction to the charged kaon mass:

4Ap 4As 12
Mys = ?md(mu +ms) + —z(mu + ms)(2ms+ 2my + mq)
bed

7T

_2/A
S

with Aa = A% /(4n2)log(pg/Aa). Using (A.2), we observe that the correction term is
irrelevant in weak coupling.

AS zms

M<1+ <_) ms ) (A.4)

AA ny

AppendixB. 1 Q + MMT/(ZpF) termsfrom integrating out the gauge field

Following the discussion in Section 3 we can also derive the ®) terms by integrating
out the gauge field. This discussion will also make it clear thatfiés andM M T terms
enter in the effective Lagrangian like gauge fields, together with flavor-nonsinglet chemical
potentials.

In this section we would also like to show how, by explicitly keeping track of the
orientation of the CFL order parameter, we can determine how the chiraldieddters
into the mass terms. This is useful because at higher order the number of independent
terms in the chiral Lagrangian quickly proliferates and it becomes more difficult to identify
the diagrams in the microscopic theory that correspond to a given term in the effective
Lagrangian.

In order to match the microscopic theory against the effective theory in the vacuum
(X =1) phase, we calculate diagrams in the microscopic theory using the Nambu—-Gorkov
propagators in the normal CFL phase. The inverse Nambu—Gorkov propagator for the
field is given by

-1 _ pO — ep A
with the anomalous self-energy

(ALY = —(AR)§F = Ag(87'8" — 8487). (B.2)
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The inverse Nambu—Gorkov propagator is not diagonal in color and flavor. It becomes
diagonal in the space spanned by the 9 color—flavor matrices

()" = (*/%(/\A)m ° ) (B.3)

0 \/LE()\-A)[”

wherer® = \/2/3 andi? (A =1,...,8) are the Gell-Mann matrices. In this basis, it is
straightforward to compute the inverse of (B.1). We find

s sAB pote —af
S IV A 7 (B.4)
pPg—€3—A3 \ —AT po—€p

with A4 = 2Ag for A =0 andA4 = —sym(A)Ag for A =1, ...,8. Here, symA) =1
for the symmetric Gell-Mann matriced = (1, 3,4, 6,8) and synjA) = —1 for the
antisymmetric matriced = (2,5, 7).

In order to keep the dependence Bn we have to perform the calculation using the
anomalous self-energy in the rotated vacuum:

(AL = Ag(X{Xh — X9X7),  —(AR){ = As(Y{ Y] —Y{Y]), (B.5)

with X € U@B)L. and Y € U(3)r. The Nambu—-Gorkov propagator for left-handed
fermions is diagonal in a basis spanned by the color—flavor matrices

1 (4 AyT\4
~A\ai \/_E()‘ X ) 0 -
(UL) _( 0 %()\AXT)EU ’ (B.6)

with a similar set of matricesﬁé)“" which diagonalize the propagator for right-handed
fermions. In the basis (B.6), the fermion propagator in the rotated CFL vacuum has exactly
the same form (B.4) that it had in the ordinary CFL vacuum (B.2). The dependence on
X, Y comes in when we calculate diagrams with external color or flavor currents. In that
case we have to take matrix elements of the external current between the basi@gjates
and(iR).

We can now calculate a one-loop diagram with insertiongvob/ ™ and the gauge
field Ag. We find

2
AE =D T xTMMTx AT). (B.7)
2pg
In the same way, we also calculate diagrams with insertiong'aff andQ. Collecting all
these terms, we get

T

2 2
m MM
£= 7DTr|:(XT,u,eQX+XT > X+A3>

Pr

Mtm 2
+(YTueQy +v1 Yy +AJ) | (B.8)
2pe
Similar to the calculation of; it is essential here to take into account the mixing with the
gauge field. Without thelg field, we would conclude that there is no dependence on the
flavor matricesX, Y. We can now integrate out the gauge fidlgl We get
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md MM’ v MM
AE=—=Tr HeQ+— > —-X ,LLeQ +
4 2P|: 2PF

MM MMt
x ((ueQ* + )2* - ET(MeQ + ))} (B.9)
2pe 2pe

where ¥ = XYT. We note that, after integrating out the gauge field, the vacuum energy
(B.9) only depends on the chiral field and not onX andY separately. Using; = m,

we observe that (B.9) contains the terms required to complete the covariant derivative
in (6).
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